3 research outputs found

    Parallel programming with PICSIL1

    Get PDF
    This paper describes the background and development of PICSIL1 a visual language for specifying parallel algorithms using structured decomposition. PICSIL1 draws upon graphical and textual specification techniques; the first for high level structure of an algorithm, the second for more detailed functional specifications. The graphical specification techniques used in PICSIL1 are based on Data Flow Diagrams (DFDs) and are well suited to the assembly and interconnection of abstract modules. Minor modifications to DFDs have however had to be made to make them suitable for describing parallel algorithms. These include the ability to dynamically replicate sections of a diagram and change the structure of parts of a diagram dependent on data being processed. Work is proceeding on the development of an editor to allow the direct capture and editing of PICSIL1 descriptions. In the near future development of compiler and visual debugging tools are planned

    A simple, validated approach for design of two-dimensional periodic particle patterns via acoustophoresis

    No full text
    Two-dimensional patterning of microparticles enables a wide range of functional materials, including patterned energy storage electrodes, flexible electronics, and sensor arrays. Particle patterning via acoustics offers an attractive path to generate a wide variety of 2D periodic patterns that introduce tailorable hierarchical porosity, useful for controlling surface area, transport distances, and other properties. This method is most effective with micron scale particles and patterns of tens to hundreds of microns. To enable systematic exploration of the broad design space for such patterns, this work develops a model of 2D and 3D assembly of particles at high loadings and validates the obtained patterns against both experiments and more computationally intensive modeling techniques. Using this simple model, connections are mapped between input parameters (like actuation conditions, particle volume fraction, material properties) and output geometrical features (like void size and shape, pattern connectivity, and surface area) so that they can be tailored to given applications. The utility of this simple model is illustrated by predicting and then experimentally demonstrating new hierarchical patterns resulting from multiple waves of different frequencies interacting. These multiscale patterns offer the potential to lift the limits on surface area, diffusion distances, and other features

    Application of an interstitial and biodegradable balloon system for prostate-rectum separation during prostate cancer radiotherapy: a prospective multi-center study

    Get PDF
    Background and purpose Rectal toxicity presents a significant limiting factor in prostate radiotherapy regimens. This study evaluated the safety and efficacy of an implantable and biodegradable balloon specifically designed to protect rectal tissue during radiotherapy by increasing the prostate\u2013rectum interspace. Patients and methods Balloons were transperineally implanted, under transrectal ultrasound guidance, into the prostate\u2013rectum interspace in 27 patients with localized prostate cancer scheduled to undergo radiotherapy. Patients underwent two simulations for radiotherapy planning--the first simulation before implant, and the second simulation seven days post implant. The balloon position, the dimensions of the prostate, and the distance between the prostate and rectum were evaluated by CT/US examinations 1 week after the implant, weekly during the radiotherapy period, and at 3 and 6 months post implant. Dose-volume histograms of pre and post implantation were compared. Adverse events were recorded throughout the study period. Results Four of 27 patients were excluded from the evaluation. One was excluded due to a technical failure during implant, and three patients were excluded because the balloon prematurely deflated. The balloon status was evaluated for the duration of the radiotherapy period in 23 patients. With the balloon implant, the distance between the prostate and rectum increased 10-fold, from a mean 0.22 \ub1 0.2 cm to 2.47 \ub1 0.47 cm. During the radiotherapy period the balloon length changed from 4.25 \ub1 0.49 cm to 3.81 \ub1 0.84 cm and the balloon height from 1.86 \ub1 0.24 cm to 1.67 \ub1 0.22 cm. But the prostate-rectum interspace distance remained constant from beginning to end of radiotherapy: 2.47 \ub1 0.47 cm and 2.41 \ub1 0.43 cm, respectively. A significant mean reduction in calculated rectal radiation exposure was achieved. The implant procedure was well tolerated. The adverse events included mild pain at the perineal skin and in the anus. Three patients experienced acute urinary retention which resolved in a few hours following conservative treatment. No infections or thromboembolic events occurred during the implant procedure or during the radiotherapy period. Conclusion The transperineal implantation of the biodegradable balloon in patients scheduled to receive radiotherapy was safe and achieved a significant and constant gap between the prostate and rectum. This separation resulted in an important reduction in the rectal radiation dose. A prospective study to evaluate the acute and late rectal toxicity is needed
    corecore